

HIE – an Update

F. L. Nakwa

Chris Hani Baragwanath Academic Hospital

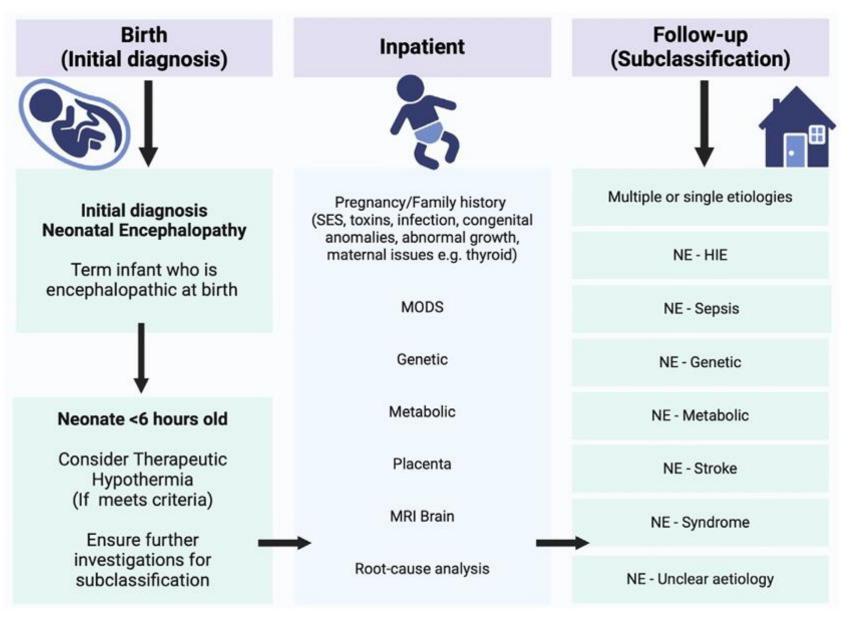
University of the Witwatersrand

Panda Webinar

11 June 2025

What's in a name? Does it matter?

- Neonatal Encephalopathy (NE) has been defined by the American College of Obstetricians and Gynecologists/ American Academy of Pediatrics (ACOG-AAP) as a
- "clinical syndrome of disturbed neurologic function in the first week after birth in an infant born at or beyond 35 weeks of gestation, manifested by an abnormal level of consciousness or seizures, often accompanied by difficulty with initiating and maintaining respiration and depression of tone and reflexes."
- NE is a descriptive diagnosis.
- An early diagnosis of NE does not imply a specific or known etiology
- A specific etiologic diagnosis is highly desirable because of implications for treatment, prognosis, and family planning.
- The more thorough the diagnostic process, the more likely it is that an underlying contributing or determinative pathology is identified


Hypoxic Ischaemic Encephalopathy (HIE)

- HIE is a subgroup of neonatal encephalopathy
- The occurrence of a "sentinel event" around the time of birth, such as a cord accident or uterine rupture, suggest HIE,
- Low Apgar scores and acidosis are consistent with HIE but are themselves consequences of prior processes not the nature of the initiating process.
- ACOG-AAP recommend that HIE be used as a final diagnosis only when diagnostic studies have been completed.
- Diagnosis may not be made until many years later or following the birth of another sibling with a similar presentation.

HIE vs NE

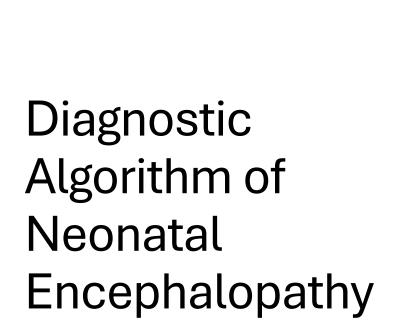
- Don't use NE and HIE interchangeably rather use the term NE
- HIE when
 - Apgar scores < 5 at 5 and 10 minutes
 - Foetal acidaemia pH < 7.0 and BD 12mmol/l
 - Neuroimaging evidence on MRI of acute brain injury
 - Multi organ dysfunction
 - Associated factors sentinel hypoxic or ischaemic event that occurs before or during labour or at birth
 - Foetal heart rate monitor patterns consistent with acute peripartum or intrapartum event
 - Timing and type of injury pattern observed on imaging consistent with an aetiology of an acute peripartum or intrapartum event
 - Developmental outcome of spastic quadriplegia or dyskinetic cerebral palsy
- 'A rose by any other name would smell as sweet' William Shakespeare

Moving from initial diagnosis to final diagnosis

Branagan et al Clinics in Perinatology 2024

Mimickers of HIE

Table 1 Clinical features of selected mimickers of hypoxic-ischemic encephalopathy						
Disorder	Similarities	Differences				
SSRI withdrawal syndrome	Hypotonia Encephalopathy Tremors Tachycardia Respiratory distress	Hypoglycemia SSRI exposure Onset day of life 1–4				
Inborn errors of metabolism	Encephalopathy Poor feeding Hypotonia Seizures Brain injury patterns on MR diffusion-weighted imaging	Dysmorphisms/congenital malformations Metabolic laboratory abnormalities Disease specific changes on MR spectroscopy				
Enterovirus encephalitis	Acute symptomatic seizures Encephalopathy Periventricular white matter restricted diffusion	Elevated inflammatory markers Exanthem Prodrome Affected sibling/exposure				
Vector-borne Acute symptomatic seizures encephalitis Encephalopathy Periventricular white matter restricted diffusion on MR imaging		Fever Thrombocytopenia Hepatomegaly Exanthem Intracranial Hemorrhage				
Spinal cord injury	Hypotonia Decreased extremity movements Respiratory distress	Areflexia Paradoxic breathing Spinal cord level on examination				


Barsh GR et al Clin Perinatol 2025

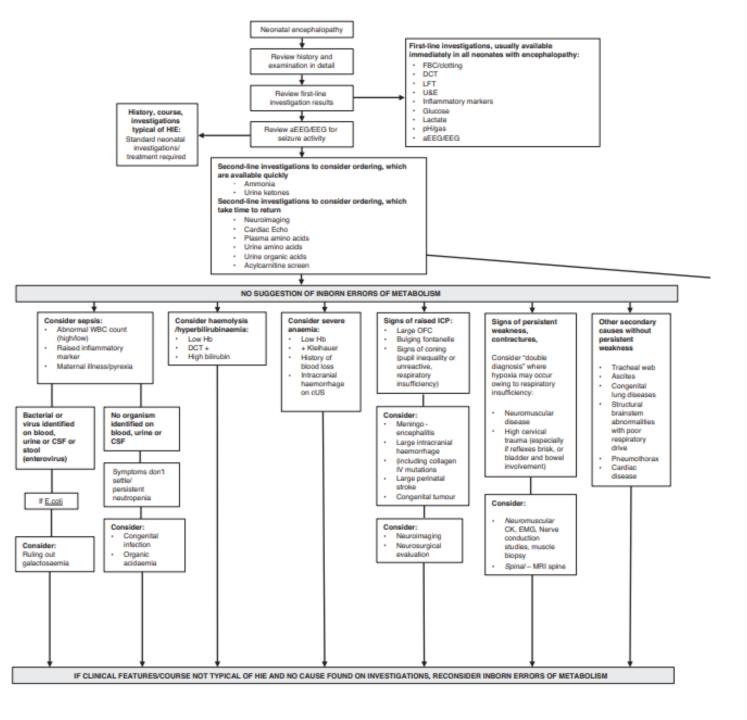

Suggested investigations for Neonatal Encephalopathy

Table 2 Suggested inves	tigations for neonatal encephalopathy
Pregnancy/ birth history	Maternal medication/Drug exposure Fetal movements IUGR Delivery complications Apgar scores
Family history	Consanguinity Early fetal or neonatal death Metabolic/genetic conditions
Physical examination	Dysmorphisms and congenital malformations Level of consciousness Cranial nerve examination Brainstem and primitive reflexes Tone, peripheral reflexes, contractures Sensory examination Skin examination Formal ophthalmologic examination for infectious or metabolic etiologies
Baseline testing	Umbilical or arterial blood gas, anion gap Serum electrolytes and calcium Complete blood count Liver enzymes Plasma lactate Plasma ammonium Urine ketones Head Ultrasound MRI brain MR spectroscopy
Second tier laboratories	CSF cell count, glucose, protein CSF culture, meningitis/encephalitis PCR panel, parvovirus PCR, parechovirus PCR Plasma amino acids Urine organic acids Plasma carnitine and acylcarnitine profiles Urine amino acids Urine reducing substances CSF amino acids

When to consider Mimickers of HIE

- SSRIs Consider monitoring and providing supportive care for symptoms like hypotonia, hypertonia, tremors, tachycardia, respiratory distress, and hypoglycemia in neonates who may be experiencing selective serotonin reuptake inhibitor (SSRI) withdrawal.
- Ensure a thorough evaluation for **inborn errors of metabolism (IEMs)** in neonates presenting with seizures, encephalopathy, or abnormal muscle tone, including the possibility of conducting extensive investigations beyond the standard newborn screening.
- Include **viral infections**, particularly vector-borne infections, in the differential diagnosis for neonates presenting with encephalopathy.
- Maintain a high level of suspicion for conditions that mimic encephalopathy, such as **spinal cord injuries**, when assessing affected neonates.

Criteria to Cool

- · Appropriate gestational age, birth weight and postnatal age (all of these)
 - Born at \geq 36 weeks
 - Weighing \geq 1800 g
 - \leq 6 hours of age at initiation <u>AND</u>
- Any ONE of the following: metabolic criteria, Apgar scores, resuscitation
 - pH <7.00 or base deficit ≥16 mmol/L based on an arterial or venous blood gas done within 60 minutes of birth or
 - pH between 7.00 and 7.15 or base deficit between 10-16 mmol/L and an acute perinatal event (e.g. late or variable decelerations, cord prolapse, uterine rupture, maternal haemorrhage or cardiorespiratory arrest)
 - Apgar score **≤5 at 10 minutes** after birth
 - Continued need for resuscitation (including endotracheal and/or bag mask ventilation) for ≥10 minutes

Criteria to Cool

- Moderate or severe encephalopathy on clinical examination (Thompson score >10) AND
- Abnormal amplitude-integrated electroencephalography (aEEG) of at least
 30 minutes duration. Abnormalities could be any of the following:
 - Moderate abnormal background (upper margin of the band above $10 \mu V$ and lower margin below 5 $\mu V)$
 - Severe abnormal background (upper margin of the band below $10 \mu V$ and lower margin below 5 $\mu V)$
 - Normal background with seizure activity
 - (<u>Note</u>: If aEEG is not available but patient meets the other three criteria, cooling should still be considered).

Major trials of therapeutic hypothermia

Table 2

Entry criteria used in different trials of hypothermic neuroprotection after perinatal asphyxia.

aEEG	Abiormal aEEG	No aEEG	• No aEEG	 Abnormal aEEG 	No aBEG
	stupor or coma • And 1 out of 3: • Hypotonia • Abnormal reflexes • Abnormal suck • or Clinical seizures	 Consciousness (abnormal) Tone Autonomic reflexes Primitive reflexes Activity Posture or: Seizures 	 Consciousness (abnormal) Tone Autonomic reflexes Reflexes Posture Seizures 	 encephalopathy or: Clinical sezures 	encephalopathy (Sarnat-modified)
Neurology	• Consciousness; lethargy,	• 3 out of 6:	• 3 out of 6:	Moderate or severe	Moderate or severe
Metabolic	 1 out of 4 (below) Apgar 10: ≤5 pH <7.00 BE ≤-16 Ventilated/resuscitated by 10 min 	 1 out of 4 (below) Apgar 10: ≤5 pH <7.00 BE ≤-12 Ventilated/resuscitated by 10 min (or fetal distress) 	 1 out of 6 (below) Apgar 5: ≤5 pH <7.00/7.1 BE ≤-13 Ventilated/resuscitated by 10 min Bradycardia ≤80 bpm, Postnatal HI event 	 1 out of 4 (below) Apgar 10: ≤5 pH <7.00 BE ≤-16 Ventilated/resuscitated by 10 min 	 2 out of 4 (below) Apgar 10: ≤5 pH <7.00 BE ≤-12 Ventilated/resuscitated by 10 min
Study	CoolCap ($n = 235$) TOBY ($n = 325$) ≥ 36 WG ≤ 5.5 h/6.0 h	NICHD trial (n = 208) ≥36 WG ≤6.0 h	Eicher trial (<i>n</i> = 67) ≥35 WG ≤6.0 h	NeonEuro (<i>n</i> = 129) ≥36 WG ≤6.0 h	ICE (n = 204) ≥35 WG ≤6.0 h

WG, weeks of gestation; NICHD, National Institute of Child Health and Development; BE, base excess mmol/l; HI, hypoxic—ischaemic. CoolCap and TOBY trials have identical criteria except entry within 5.5 h (CoolCap) and 6.0 h (TOBY). Data from the NeonEuro and ICE trials are not yet published.

Time course of Pathophysiological Phases of Injury

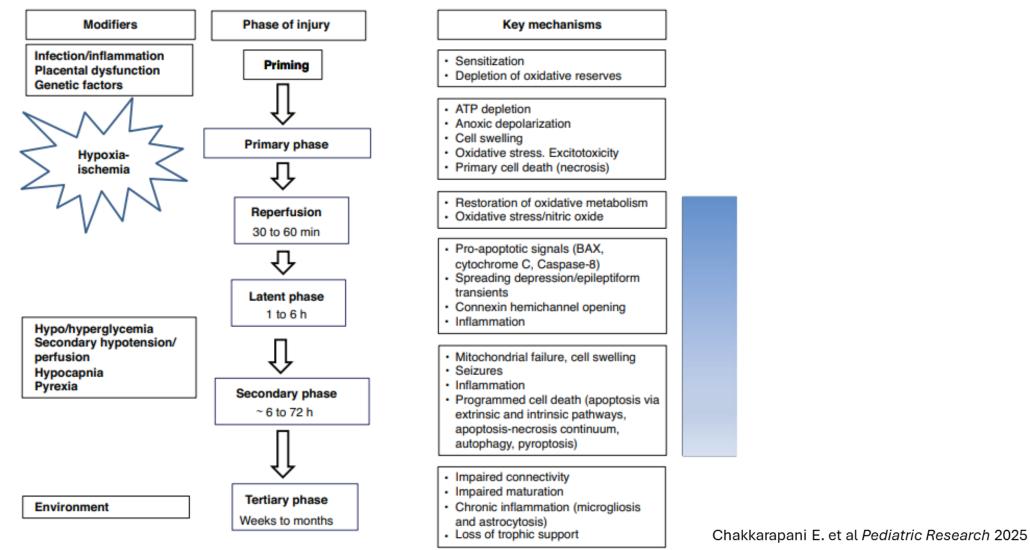


Fig. 2 Schema showing the time course of the pathophysiological phases of injury, key mechanisms, and modifying factors before and after hypoxia-ischemia. The blue bar shows when therapeutic hypothermia needs to be applied to achieve effective neuroprotection.

Monitoring and Management

System	Clinical Features	Monitoring/Investigations	Management Considerations
Neurologic	Abnormal neurologic examination Seizures	aEEG/cEEG NIRS MRI	IV phenobarbital is first-line ASM, should be used for EEG- confirmed seizures Avoid systematic prescription of ASM at discharge
Respiratory	Hypoxemia Hypocapnia Respiratory acidosis	Cord blood gas Arterial blood gas CXR	Extubate when stable to limit hypocapnia Use pH-stat for temperature-corrected blood-gas values interpretation ⁷ Use lowest F_io_2 effective to achieve P_ao_2 (50–70) mm Hg and $Spo_2 \ge 92\%$
Cardiovascular	Hypotension Shock Arrythmias Heart failure Ischemia	Blood gas Echocardiography Cardiac troponin Lactates	Correct hypotension; adjust treatment according to clinical pictures and lactates ⁷ Sinus bradycardia is acceptable if adequate cardiac output Consider ECMO if severe pulmonary hypertension
Metabolic	Hypoglycemia/hyperglycemia Hypocalcemia Hypomagnesemia Metabolic acidosis Hyponatremia	Blood glucose Calcium Lactates Electrolytes	Start with 10% IV dextrose, customize as needed aiming for ≥2.6 mmol/L, avoid hyperglycemia Customize IV fluids to meet electrolyte requirements
Renal	Acute tubular necrosis Oliguria Polyuria Hematuria	Urea Creatinine Fluid balance (body weight, urine output, fluid intake)	Start with 60–70 mL/kg/d of IV fluid with customized electrolytes and glucose Avoid systematic fluid restriction ⁷ If oliguria, management based on cause of oliguria
Hematologic	Elevated nucleated RBCs Thrombocytopenia Bleeding, DIC Thrombosis Anemia	CBC Coagulation profile	Transfuse platelets if needed Transfuse FFP if needed Transfuse cryoprecipitate if needed Give supplemental vitamin K if needed Transfuse PRBC if needed
Gastrointestinal	Feeding intolerance GI bleeding Necrotizing enterocolitis	LFTs	NPO during TH, but possible benefit of introduction of enteral breast milk if stable ⁷

Monitoring and Management 2

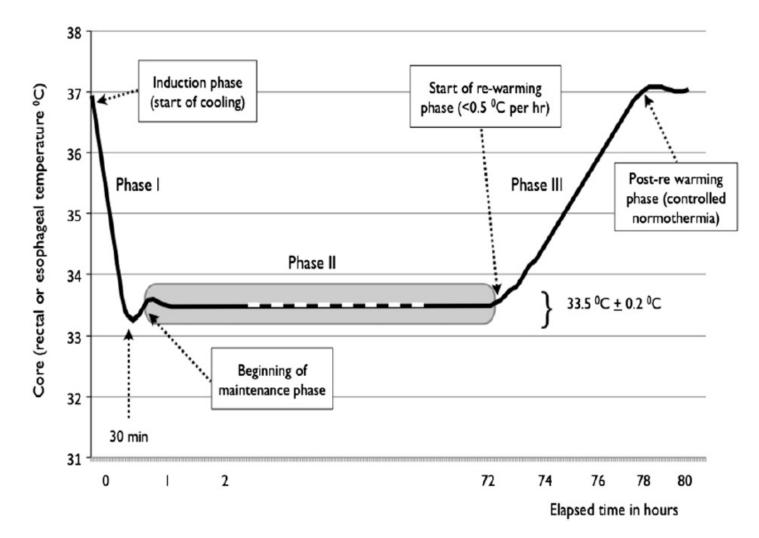
System	Clinical Features	Monitoring/Investigations	Management Considerations
Infectious	Sepsis	CBC Blood culture	Initiate empiric antibiotics until sepsis is excluded
Temperature	Hypothermia/hyperthermia	Esophageal or rectal temperature	Start TH as soon as possible within the first 6 h of life Avoid hyperthermia
Skin	Subcutaneous fat necrosis	Regular skin examination	Frequent repositioning of neonates on cooling during TH Hyperhydration and diuretic treatment for SFN Monitor for hypercalcemia
Comfort & sedation	Discomfort Shivering		Promote nonpharmacologic approaches (holding, parental presence) Consider low-dose morphine

Methods of Cooling

Whole body cooling(WBC) vs Selective Head Cooling (SHC)

- SHC adequate neuroprotection with minimal risk of systemic side effects
 - differential temperature gradients in the brain
 - decrease in severe cortical lesions on MRI
 - more effective balance of cooling
 - better protective effect to cortex and cognitive function
- WBC- associated with adverse effects
 - fewer temperature gradients in the brain

Hoque, Paedaitrics 2010


Methods of Cooling

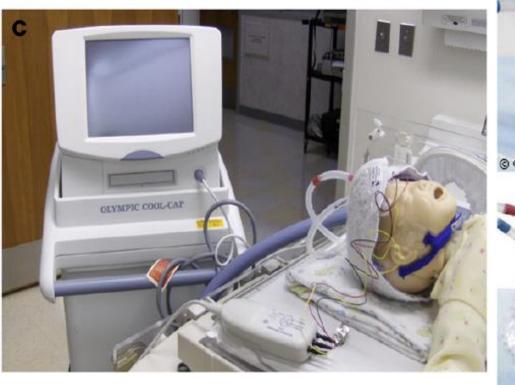
- Selective Head Cooling
- > thrombocytopaenia
- Less significant decreases mortality, neuromotor disability, developmental delay

- Total Body Cooling
- > leukopaenia
- > hypoglycaemia
- > fat necrosis
- > systemic side effects

Pooled results show effect of both methods of cooling however, to be conclusive will need future trials where the two methods are compared head to head

Phases of Cooling

Robertson N. J. et al. Seminars in Fetal & Neonatal Medicine 2010


Techniques to Cool – High tech

High-tech cooling devices

Parameter	Blanketerol III	Tecotherm TS med 200	MTRE CritiCool	Cool-Cap	Tecothermo-Servo
Design	Mattress and wraps	Mattress	Body wraps	Caps over head along with radiant warmers	Mattress (can be wrapped around if required)
Coolant	Water	Alcohol-based	Water	Water	Alcohol-based
Type of cooling	Whole body	Whole body	Whole body	Selective head cooling	Whole body
Precooling required	Yes	No	No	No	No
Typical site of record	Oesophageal	Rectal	Rectal	Rectal	Rectal
Induction	Rapid, overcooling occurs	Rapid, overcooling occurs	Rapid, overcooling is minimal		Rapid, overcooling is minimal
Maintenance	Low nursing input	High nursing input	Low nursing input	High nursing input	Minimal nursing input (must check that the rectal probe is in situ)
Rewarming	Manual	Manual	Semi-automated	Manual	Fully automated
User-friendliness of panel	Water flow indicator	Digital temperature display	Graphic and digital displays	LCD touch screen Colour LCD	Graphic and digital displays with three different modes of operation
Effective cooling time	Low	Low	High	Low	High
Recurrent expenses	Cooling wraps	Nil	Cooling wraps	Cooling cap	Cooling mattress and coolant top-ups
Weight (kg)	55.3	10	35	52	7
Portable	No	Yes	No	No	Yes
Use in transport	No	No	Yes	No	Yes
Battery operation	No	No	No	No	Yes
Space required (cm)	$43.2\times43.2\times950.2$	$42.0\times19.0\times35.0$	$26.0\times62.5\times94.0$	$132.1\times43.4\times56.6$	$42.0\times19.0\times35.0$

LCD, liquid crystal display.

Techniques of cooling - Coolcap

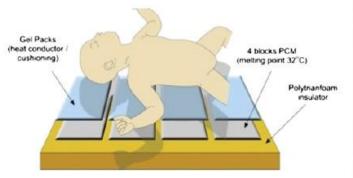
Cooling Devices – High Tech

а TSmed 200 TECOTHERM CISZ

Robertson N. J. et al. Seminars in Fetal & Neonatal Medicine 2010

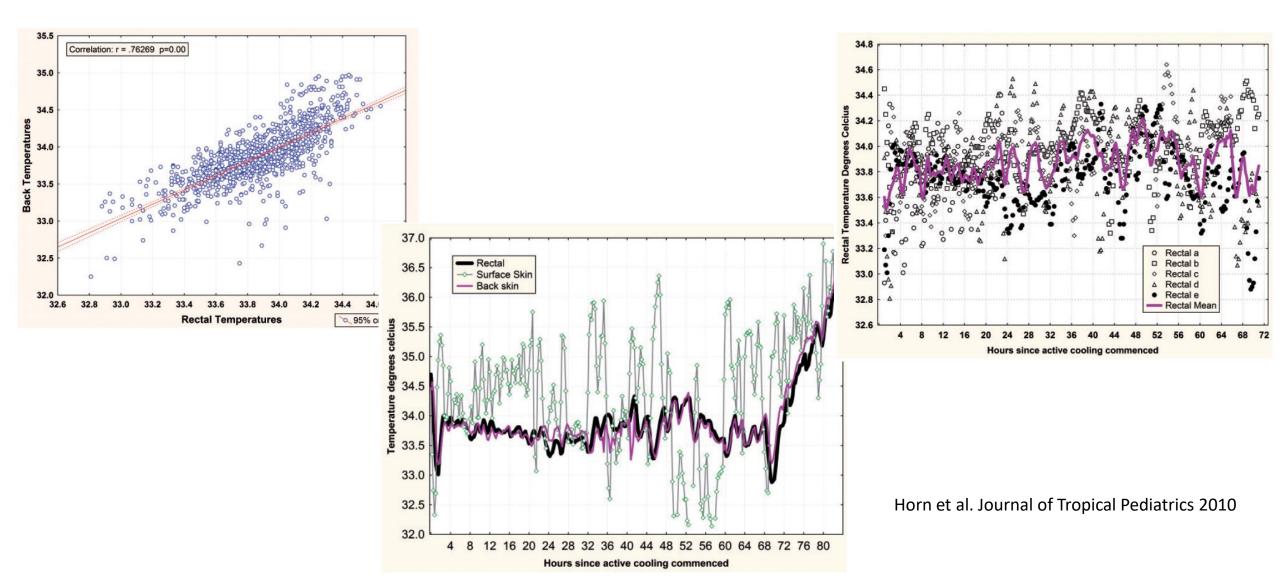
Low Tech cooling Devices

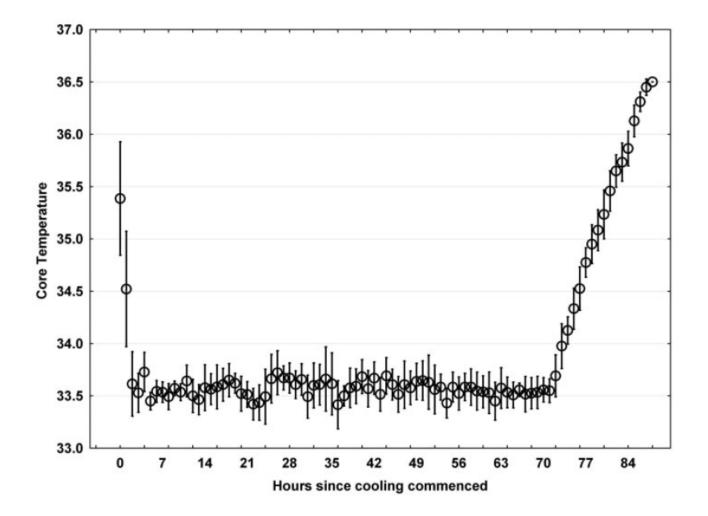
Low-tech cooling devices


	Natural cooling	Water bottles	Fan	Gels	PCM
Design	Occurs in settings without radiant warmers	Whole-body cooling with mattress made of three water bottles laid sideways and filled with cool tap water	Servo-controlled fan. Overcooling prevented by servo-controlled radiant warmer	Soft, cold gel bags (12 cm × 12 cm, 250 g, refrigerator kept at 7–10 °C) applied to the head. Infant warmed with radiant warmer	Naked baby on PCM mattress (melting point 32 °C). Blankets used when needed
Induction time	Soon after birth	Within 1 h	Within 1 h	Within 1 h	Within 1 h
Maintenance	May last up to 15 h, if radiant warmers not used	Core/rectal temp. 33–34 °C	Rectal temp. 33.4–33.7 °C	Rectal temp. at 33–34 °C	Rectal temp. 33−34°C
Rewarming	Passive and slow, generally <0.5 °C/h	Passive and slow, generally <0.5 °C/h	Stepwise increase of radiant warmer	Stepwise increase of radiant warmer	Passive and slow, generally <0.5 °C/h
Ambient temperature	<26 °C	25–26 °C	24 °C	24 °C	<30 °C
Shivering	No	No	Yes	Yes	No
Temperature stability	Poor	Acceptable	Acceptable	Variable	Acceptable

PCM, phase-changing material.

Cooling Techniques – Low Tech




Manual methods

- Gel bags, Mira cradle change out the bags, and the phase change material
 - Manually taking temperatures rectally can use a servo controlled radiant warmer decrease temperature to 34 degrees
 - Staff shortages over 'cool'
- Passive cooling
 - Turning off the radiant warmer needs intensive monitoring over shoot.
 - Protocol to warm up the patients blankets, warm bottles tepid water
- Labour intensive

Gel Bags - Validation

A Servo-Assisted Gel-Pack Cooling Method for Newborn Infants with Hypoxic-Ischemic Encephalopathy

Therapeutic Hypothermia in Uganda – water bottles

- TH water bottle filled with tepid tap water form the neonatal unit is feasible in a low resource setting.
- Higher mortality was seen in the cooled vs the standard care group (risk ratio: 5.0 (95% confidence interval (CI) 0.7-37)
- More infants with severe neonatal encephalopathy were randomized to the cooled group, which could explain the excess deaths;
- No facilities for infection screening at the time.

How to cool (1) for pilot feasibility and safety study of a simple, low cost method

Phase Change Material (PCM)

Phase Changing Material for Therapeutic Hypothermia in Neonates with Hypoxic Ischemic Encephalopathy — A Multi-centric Study

- 11 Level 3 NNU in India (November 2014 to December 2015)
- The median (IQR) of time taken to reach target temperature was 90 (45, 120) minutes.
- The mean (SD) deviation of temperature during cooling phase was 33.5 (0.39) °C.
- Temperature readings were outside the target range in 10.8% (5.1% of the readings were <33°C and 5.7% were >34°C).
- Mean (SD) of rate of rewarming was 0.28 (0.13)°C per hour.
- Feasible and safe to provide therapeutic hypothermia to asphyxiated neonates
- Maintenance of target temperature was comparable to standard servo-controlled equipment

Cochrane review

- 11 randomised trials were included
- 1505 term infants with moderate to severe encephalopathy and evidence of intrapartum asphyxia
- Hypothermia resulted in statistically significant and clinically important reduction in the combined outcome of mortality and major neurodevelopmental disability to 18 - 24 months of age
- NNT =7
- Borderline increase in the need for inotropic support and significant increase in bradycardia and thrombocytopaenia

TH vs Standard Care – Death and Disability

Study or subgroup	Hypoth	ermia	Standa	rd care	Weight,	Risk ratio	Risk r	
	events		events total		%	M-H, fixed (95% CI) M-H, fixed	1, 95% CI
1.1.1 Selective head cooli Gunn, 1998 Cool Cap Study, 2005 Zhou, 2010 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 2.46$, d Test for overall effect: Z = 2	7 59 31 97 .f. = 2 (p =	18 108 100 226 0.29), I ² = 1	4 73 46 123	hermia 13 110 94 217	1.1 17.6 11.5 30.3	1.26 (0.46, 3.44) 0.82 (0.66, 1.02) 0.63 (0.44, 0.91) 0.77 (0.64, 0.92)		•
1.1.2 Whole body cooling Eicher, 2005 NICHD Study, 2005 TOBY Study, 2009 neo.nEURO Study, 2010 ICE Study, 2011 Subtotal (95% CI) Total events Heterogeneity: χ^2 = 4.25, d Test for overall effect: Z = 4	14 45 74 27 55 215 .f. = 4 (p =		21 64 86 48 67 286 5%	25 103 162 58 101 449	5.3 15.5 21.0 11.2 16.8 69.7	0.62 (0.41, 0.92) 0.71 (0.54, 0.93) 0.86 (0.68, 1.07) 0.62 (0.46, 0.82) 0.77 (0.62, 0.98) 0.75 (0.66, 0.84)		
Total (95% CI) Total events Heterogeneity: $\chi^2 = 6.89$, d Test for overall effect: Z = 5 Test for subgroup difference	5.53 (p < 0.0	0001)		666), I ² = 0%	100.0	0.75 (0.68, 0.83) ().2 0.5 1 Favors hypothermia	2 5 Favors standard care

Fig. 1. Therapeutic hypothermia versus standard care. Effect on death or disability in survivors assessed (by method of cooling).

Jacobs SE, Cochrane Review 2013

TH vs standard Care - Death

Study or subgroup	Hypothermia	Standard care	Weight,	Risk ratio	Risk ratio
	events total	events total	%	M-H, fixed (95% CI)	M-H, fixed, 95% CI
1.2.1 Selective head cooli Gunn, 1998 Akisu, 2003 Cool Cap Study, 2005 Lin, 2006 Zhou, 2010 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 1.56$, d Test for overall effect: Z = 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 13 2 10 42 110 2 30 27 94 257 76	1.4 1.0 16.7 0.8 11.2 31.1	0.72 (0.17, 3.03) 0.18 (0.01, 3.41) 0.87 (0.61, 1.25) 0.94 (0.14, 6.24) 0.70 (0.42, 1.15) 0.78 (0.59, 1.04)	
1.2.2 Whole body cooling Shankaran, 2002 Eicher, 2005 NICHD Study, 2005 TOBY Study, 2009 neo.nEURO Study, 2010 ICE Study, 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 2.92$, d Test for overall effect: Z = 3	2 9 10 32 24 102 42 163 20 53 27 108 467 125 .f. = 5 (p = 0.71), I ²	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.1 5.5 15.2 17.7 12.6 16.8 68.9	0.74 (0.16, 3.48) 0.74 (0.38, 1.41) 0.64 (0.41, 0.98) 0.95 (0.66, 1.36) 0.66 (0.44, 1.00) 0.65 (0.43, 0.97) 0.73 (0.61, 0.89)	
Total (95% CI) Total events Heterogeneity: $\chi^2 = 4.72$, d Test for overall effect: Z = 3 Test for subgroup difference	3.59 (p = 0.0003)	_	100.0	0.75 (0.64, 0.88) 0.01 hy	♦ 0.1 1 10 100 Favors Favors rpothermia standard care

Fig. 2. Therapeutic hypothermia versus standard care. Effect on death (by method of cooling).

Jacobs SE, Cochrane Review 2013

Outcomes in HIE

Short Term Outcome	Long Term Outcome	
Seizures	Motor	Cerebral Palsy
Feeding Difficulties	Sensory	Hearing loss and Visual impairment
Death	Cognitive	Episodic and working memory deficits
		Attention deficits
	Educational	Increased Support Requirements
		Lower School Readiness Test scores
	Behavioural	Attention Deficits
		Explosiveness and Irritability
	Neuropsychiatric	Psychotic symptoms and Schizophrenia
	Neurodevelopmental	Autism Spectrum Disorders

Long term Outcomes (6-7 years)

- NICHD death or disability was decreased (41% vs 60% P=0.03)
 survivors IQ < 70 (27% vs 33%) and CP in 17% vs 29% (P=NS)
- Toby 52% hypothermia patients vs 39% control group children survived with an IQ>85 (RR>1.31, P=0.04)
 - number of children that died were 29% vs 30%
 - 45% vs 28 % survived without neurological abnormalities (RR 1.61, CI 1.15-2.22)
 - a decrease in the rate of CP and moderate to severe disability
- CoolCap status at 18 months was associated with status at 6-7 years (p<0.001)
 - CP diagnosed at 18 months was highly associated with WeeFim mobility scores at 7-8 years

Summary of Findings of NICHD and TOBY Trials

Variable	NICHD trial (2012) ²⁹⁾			Т	TOBY trial (2014) ³⁰⁾		
variable	Hypothermia	Control	P value	Hypothermia	Control	P value	
Death, no./total no. (%)	27/97 (28)	41/93 (44)	0.04	47/163 (29)	49/162 (30)	0,81	
Death or IQ score <70, no./total no. (%)	46/97 (47)	58/93 (62)	0,06	-	-	-	
IQ score ≥85, no./total no. (%)	-	-	-	75/145 (52)	52/132 (39)	0.04	
Death or severe disability, no./total no. (%)	38/93 (41)	53/89 (60)	0.03	-	-	-	
Moderate or severe disability, no/survivors' total no. (%)	24/69 (35)	19/50 (38)	0.87	21/96 (22)	31/83 (37)	0.03	
Cerebral palsy, no./ survivors' total no. (%)	12/69 (17)	15/52 (29)	0.14	21/98 (21)	31/86 (36)	0.03	
Survival free of disability, no./survivors' total no. (%)	28/69 (41)	21/50 (42)	0.87	65/96 (68)	37/83 (45)	0.002	
Blindness, no./survivors' total no. (%)	1/67 (1)	2/50 (4)	0.42	1/98 (1)	1/82(1)	1.00	
Hearing impairment, no./ survivors' total no. (%)	3/63 (5)	1/50 (2)	0.45	4/98 (4)	8/83 (10)	0,15	
Full-scale IQ score, mean±SD	89,9±23,3	75,3±24,4	0.23	103.6±14.4	98,5±18,9	0.07	
Verbal IQ score, mean±SD	85,9±19,1	86.4±13.7	0.88	105,2±15,6	101,1±17,3	0,16	
Performance IQ score, mean±SD	91,3±17,3	90,5±16,3	0.82	101,1±15,0	96,7±19,0	0,12	
Processing speed score, mean±SD	-	-	-	98.7±12.4	95.3±18.7	0.22	

NICHD, National Institute of Child Health and Human Development; TOBY, Total Body Hypothermia for Neonatal Encephalopathy; IQ, intelligence quotient; SD, standard deviation.

Boldface indicates a statistically significant difference with P<0.05.

Novel Therapeutic Agents

		Neuropr	otective			
Therapies	Antiexcitatory	Antiapoptotic	Anti- inflammatory	Antioxidative	Neurorestorative	Route, Dosing, and Schedule
Allopurinol						Pre: IP, 135 mg/kg immediately post-HI RCT: IV, 20 mg/kg post-HI (30 min after birth) + 10 mg/kg H12 if TH
Azithromycin			~			Pre: IV or IV, 1.5–150 mg/kg 15 min–4 h post-HI or 2 h post-HI + H24 + H48
Caffeine						Pre: IP or PO, 5–20 mg/kg immediately post-HI RCT: IV, 20 mg/kg post-HI (before 24 h of life) + 5 mg/kg q24h ×2 doses
Erythropoietin						Pre: IV, 5000 U/kg 3 h post-HI + 833.3 U/kg/h × 69 h or 1000 U/kg immediately post-HI + H24 + D7 RCT: IV, 1000 U/kg post-HI (before 26 h of life) + D2 + D3 + D4 + D7
Mgso ₄	~		1	1 ~		Pre: IP, SC, or IV, 100–1000 mg/kg immediately post-HI RCT: IV 250 mg/kg within 6 h post-HI + H24 + H48
Melatonin		7	7			Pre: IP, 10–20 mg/kg immediately post- HI + H24 + H48 or 0.5 mg/kg/h infusion × 2 h or 10–15 mg/kg immediately post- HI RCT: PO or IV, single dose on admission or q2h ×8 doses or daily ×3–5 d

Novel Therapies for HIE 2

		Neuropr	otective					
Therapies	Antiexcitatory	Antiapoptotic	Anti- inflammatory	Antioxidative	Neurorestorative	Route, Dosing, and Schedule Pre: IP immediately post-HI or PO 12 h post-HI RCT: PO 2–3 mg/kg q12h × 7 d starting D2/3		
Sildenafil					~			
Stem cells						Variable, usually single dose		
тн	1					$33.5^{\circ}C \times 72$ h started within 6 h		
Topiramate						Pre: IP 20–100 mg/kg immediately post- HI + H2 or PO 50 mg/kg immediately post-HI + H2 + q12h × 5 d RCT: PO 5 mg/kg post-HI (at TH initiation) + 3 mg/kg/d × 5 d		
Xenon						Pre: Inhaled 50% Xe × 3 h immediately or up to 2 h post-HI RCT: Inhaled 30% Xe × 24 h immediately post-HI		

Outcomes after Neuroprotective Agents

Neuroprotective agents	Study	Study group (n)	Control group (n)	Protocol	Findings
Epo	Wu et al. ⁴¹⁾ (2016)	24 (Epo 1,000 U/kg intravenously plus hypothermia)	26 (saline plus hypothermia)	Epo at 1, 2, 3, 5, and 7 days of age with hypothermia started within 6 hr of birth, for 72 hr	Brain MRI at mean 5.1 days showed significant lower brain injury score in Epo group; and better motor outcome at mean age 12.7 mo
	Juul et al. ⁴³⁾ (2018)	Enrolling 500 (Epo 1,000 U/kg intra- venously plus hypo- thermia)	Recruiting (sa- line plus hypo- thermia)	Epo at 1, 2, 3, 5, and 7 days of age with hypothermia started within 6 hr of birth, for 72 hr	Ongoing study: evaluation of neurode- velopmental outcomes and mortality up to 24 mo
	Patkai et al. ^{44),a)} (2014)	Enrolling 120 (Epo 1,000to 1,500 U/kg intravenously plus hypothermia)	Recruiting (sa- line plus hypo- thermia)	Epo at day 1 (at <12 hr), 2 and 3 every 24 hr) with hypothermia started within 6 hr of birth, for 72 hr	Ongoing study: evaluation of survival without neurologic sequelae at 24 mo
Xenon	Azzopardi et al. ⁴⁰⁾ (2016)	46 (30% inhaled xenon plus hypo- thermia)	46 (hypothermia alone)	Hypothermia in combination with 30% inhaled xenon for 24 hr commenced a median of 10 hr after birth	No reduction in lactate to N-acetyl as- partate ratio in the thalamus in MRI/ MRS; administration of xenon was safe but did not enhance the neuroprotec- tive effect of hypothermia
Melatonin	Aly et al. ³⁹⁾ (2014)	15 (melatonin 10 mg/ kg plus hypother- mia)	15 (hypothermia alone)	Melatonin 10 mg/kg daily for a total of 5 enteral doses with hypother- mia	Melatonin/hypothermia group had fewer seizures, fewer white matter abnor- malities on MRI and better mortality rate at 6 months without neurode- velopmental abnormalities
Stem cell	Cotten et al. ³⁸⁾ (2014)	23 (fresh autologous UCB cell plus hypo- thermia)	82 (hypothermia alone)	Infusion of 4 doses of UCB, 1–5×10 ⁷ cells/dose (the first dose after birth, and at 24, 48, and 72 post- natal hours) with hypothermia	UCB cell administration with hypothermia therapy was safe but did not provide long-term neurodevelopmental outcomes at 12 mo
Topiramate	Filippi et al. ⁴²⁾ (2018)	21 (topiramate plus hypothermia)	23 (hypothermia alone)	Topiramate administration by oro- gastric tube, at the dosage of 10 mg/kg/day at 1, 2, and 3 days of age with hypothermia	Topiramate was safe but did not reduce the combined frequency of mortality and severe neurological disabilities at 18–24 mo

Epo, erythropoietin; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; UCB, umbilical cord blood,

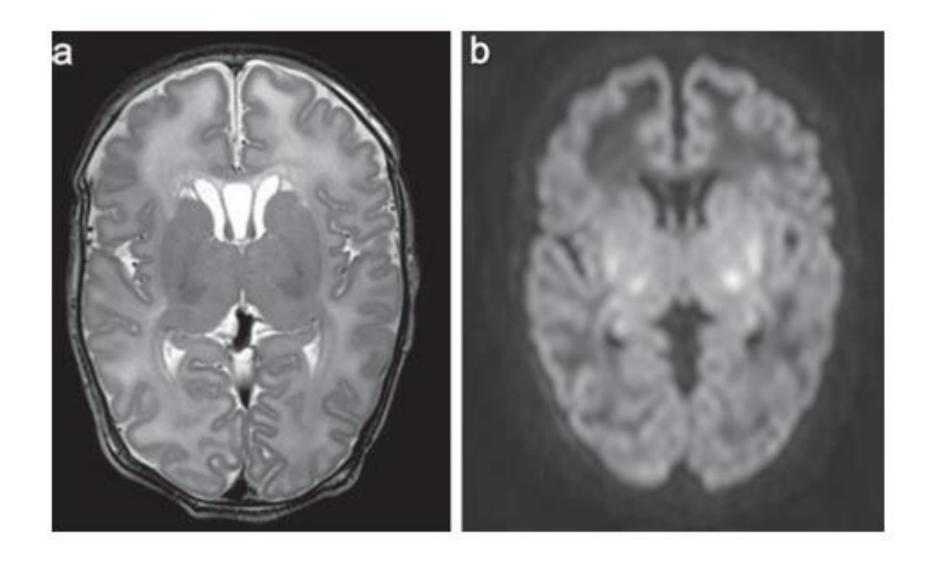
^{al}Quoted from Rangarajan and Juul.⁴⁴⁾

Lee BL et al. Clin Exp Pediatr Vol. 64, No. 12, 608–618, 2021

Cognitive Outcomes in Late Childhood

Study	Median or mean age (yr)	Study group (n)	Control group (n)	Measurements	Findings
Late childhoo	od (5–10 yr)				
Robertson and Finer ¹²⁾ (1988)	5.5	127 (56 With mild NE, and 71 with mode- rate NE)	Neonatal compari- son group ^{a)} : 71, peer comparison group: 188	Stanford-Binet Intelli- gence Scale; accepted norms are 100±16	Moderate NE group had the lowest mean IQ score. - Moderate NE: 99±18 ^{b)} - Mild NE: 106±12 - Neonatal comparison: 105±15 - Peer comparison: 108 ±14
Robertson et al. ¹³⁾ (1989)	8	145 (56 With mild NE, 84 with moderate NE, and 5 with se- vere NE)	Peer comparison group:155	WISC-Revised (1974)	Lower mean IQ score in moderate impaired and nonimpaired NE group compared with those of the mild NE and peer group. - Moderate nonimpaired NE: 102±17 ^{b)} - Moderate impaired NE: 68±27 ^{b)} - Mild nonimpaired NE: 106±13 - Control: 112±13
Marlow et al ¹⁴⁾ (2005)	7.2	50 (32 With mode- rate NE, and 18 with severe NE)		British ability scales (BAS-II) school-age battery	 General cognitive ability scores were lowest in the severe NE group for children without motor disability; Peer and moderate groups had comparable scores. Severe NE: 103±13^{bj} Moderate NE: 112±11 Control: 114±14
van Kooij et al ^{15≬} (2010)	910	80 (34 With mild NE, and 46 with mode- rate NE)		WISC-III (Dutch version)	 The mean estimated IQ score of children with moderate and mild NE without cerebral palsy were lower than that of the control group. Children with CP: 70±18^{b)} Moderate NE without CP: 92±20^{b)} Mild NE without CP: 99±14^{b)} Control: 109±12
van Handel et al ¹⁶⁾ (2012)	9,9	81 (32 With mild NE, 39 with moderate NE, and 10 with CP)	Peer comparison group: 53	WISC-III (Dutch version)	 All group differences in mean estimated IQ score were significant except between moderate NE mild NE. Children with CP: 72±18^{b)} Moderate NE: 91±21^{b)} Mild NE: 99±14^{b)} Control: 109±12

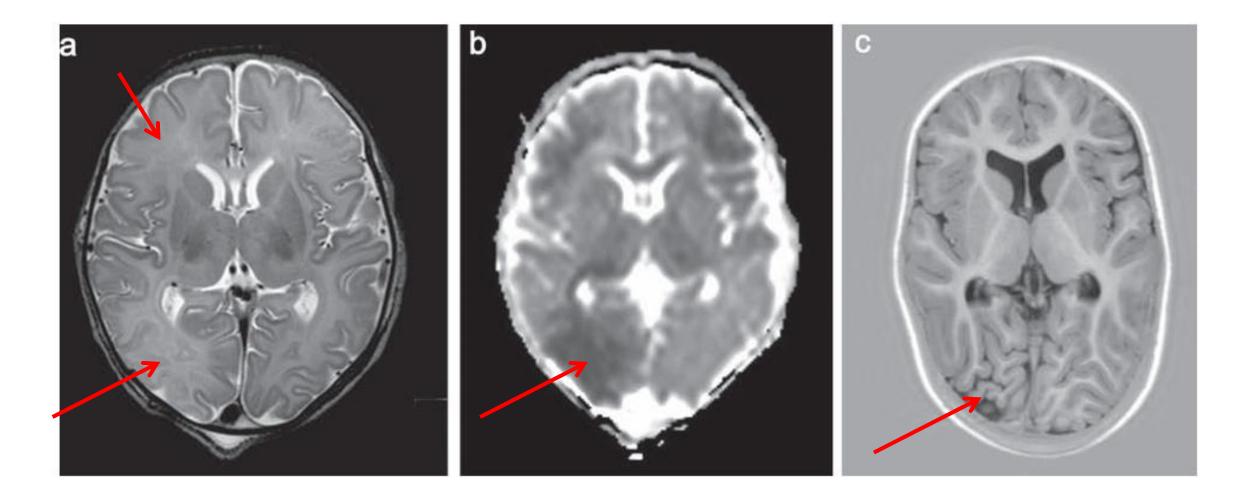
Lee BL et al. Clin Exp Pediatr Vol. 64, No. 12, 608–618, 2021

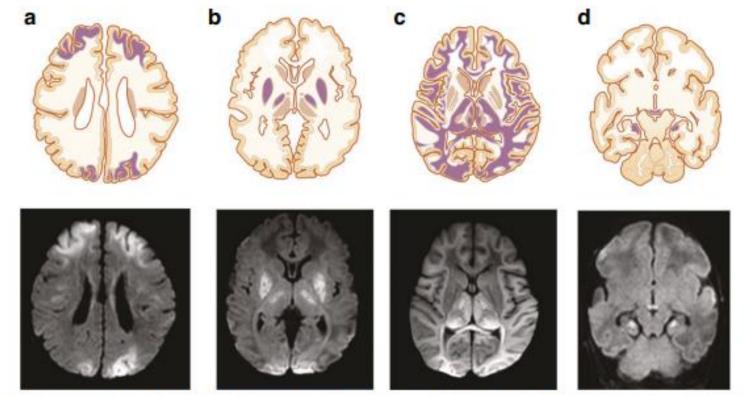

Cognitive Outcomes in Adolescence

Adolescence (1	1–18 yr)				
Gadian et al ¹⁷⁾ (2000)	12,9	5 Without major neu- rologic deficits	Normal subjects: 35	Wechsler Memory Scale (Wechsler, 1945)	 All 5 patients showed severe impairments of episodic memory (memory for events). Memory quotient (MQ) of patients with HIE: 83.8±5.4 MQ of normal subjects: 105.8±13.9
Mañeru et al ¹⁸⁾ (2001)	15,6	28 (8 With mild NE, and 20 with mode- rate NE)	Matched healthy adolescents: 28	Rey's Auditory Verbal Learning Test	Participants with moderate NE showed decreased ability of delayed recall. - Moderate NE: 11.5±1.9 ^{b)} - Mild NE: 12.0±1.6 - Control: 12.9±1.5
Lindstrm et al. ²⁰⁾ (2006)	16,8	28 With moderate NE without CP	Siblings of school age: 15	WISC-III	 Study group had more cognitive dysfunction (low/ borderline IQ and learning disability) compared to their siblings. Moderate NE: 20/28 (71%) Control: 2/15 (13%)
Perez et al. ³⁾ (2013)	11,2	57 Without CP and severe mental retar- dation	None	WISC-R (German ver- sion)	 Full-scale and performance IQ scores were significantly lower in study group than the population norms. Full-scale IQ mean score: 95 (62–120) Verbal IQ mean score: 98 (63–123) Performance IQ mean score: 95 (66–118) Full-scale IQ score < 85: 14/57 (25%)
Lee et al. ²¹⁾ (2021; in press)	13	16 With NE	None	WISC-IV, V, and WASI-II	Adolescents (n=7) with watershed pattern of injury had lower the mean estimate of overall cognitive ability than those (n=7) with normal imaging (94±21 vs. 113 ±9, P=0.04)

MRI Patterns of Injury - BGT

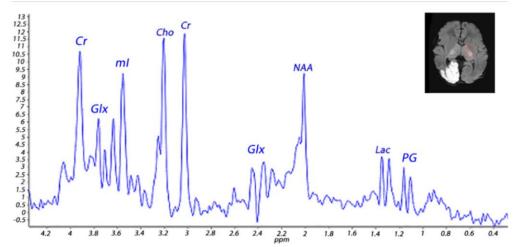
- A basal-ganglia-thalamus pattern (BGT) predominantly affecting bilaterally the central grey nuclei and peri-rolandic cortex.
- Associated involvement of the hippocampus and brain stem is not uncommon
- This pattern of injury is most often seen following an acute sentinel event and is also referred as a pattern following **'acute near total asphyxia'**.
- Using conventional MRI, absence of a normal high signal intensity of the posterior limb of the internal capsule (PLIC) is highly predictive of severe adverse sequelae.
- Neonates with BGT pattern of injury are often so severely disabled that they will not be included in long-term follow-up studies.


MRI Of BGT Injury


MRI Patterns of Injury - WS

- The watershed predominant pattern of injury (WS) pattern seen following *prolonged partial asphyxia*.
- The vascular WS zones (anterior-middle cerebral artery and posterior-middle cerebral artery) - white matter and in more severely affected infants also the overlying cortex.
- The lesions can be unilateral or bilateral, posterior and/or anterior.
- A repeat MRI may show cystic evolution, but more often atrophy and gliotic changes will be recognised.
- As (severe) motor impairment is uncommon in this group of infants, they are not uncommonly considered to have an early normal outcome, when seen at 12–18 months and are then discharged from further follow-up.
- However, suboptimal head growth, behavioural problems and delay in language are common

MRI of WS Injury


Representation of Patterns of Injury

ig. 1 Schematic drawings (top row) and axial MRI-diffusion weighted images taken during the first week of life (bottom row) showing common patterns of brain injury seen in infants with hypoxic-ischemic encephalopathy. From left to right: bilateral watershed injury (a); basal ganglia/thalamic injury (b); near total pattern of injury (c) and injury to the mammillary bodies and hippocampi (d).

MRI and MRS

- Valuable tool for assessing brain metabolism and predicting neurodevelopmental outcomes
- MRS is used to measure the concentration of various chemical compounds in the brain, such as N-acetylaspartate (NAA), lactate, and creatine.
- Elevated lactate levels and decreased NAA levels are early indicators of brain injury in HIE.
- MRS can assess metabolite ratios like lactate/NAA (Lac/NAA), which can accurately predict adverse neurodevelopmental outcomes.

Optimizing Cooling (OC) Trial

- NICHD NRN longer and deeper cooling on death and disability of infants with moderate to severe HIE
- 4 groups 33.5 C for 72 hours, 33.5 C for 120 hours, 32.0 C for 72 hours and 32.0 C for 120 hours
- Study had to be halted increase mortality and safety concerns
- Neonates with deeper and longer duration of cooling were at risk of death
- Deeper and longer cooling NOT neuroprotective
- Late Hypothermia Trial
- Initiated at 6 -24 hours
- Did not show benefit or harm

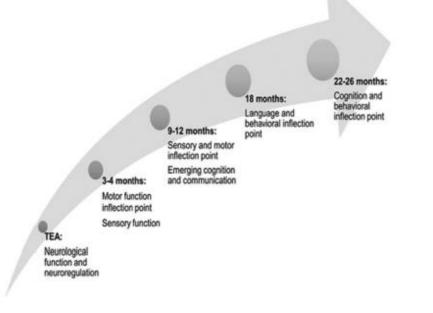
Preterm Hypothermia

- NICHD NRN RCT -168 enrolled (88 TH vs 80 NT)
- Average GA > 34 weeks
- More neonates in the TH demised (35% vs 29%)
- Moderate NNE vs severe NNE more harm with TH

Tes	ble	. 6	
100	Part of		

Posterior probabilities of the primary outcome and its components, death alone and survival with disability: neutral prior

	Hypoth (n = 8		Normoth (n = 6		Bayesian Results				
	n/N	%	n/N	%	aRR (95% credibility interval)	Probability of treatment harm			
Death or moderate or severe disability	29/83	35	20/69	29	1.11 (0.74–2.00)	74%			
Death	18/83	22	9/69	13	1.38 (0.79-2.85)	87%			
Survival with moderate or severe disability	11/83	13	11/69	16	0.86 (0.46–1.63)	32%			


PRIME Study

Prospective research in infants with mild encephalopathy identified in the first six hours of life: neurodevelopmental outcomes at 18–22 months

- Multicenter, prospective study of mild HIE defined as ≥1 abnormality using the modified Sarnat within 6 h of birth and not meeting cooling criteria.
- 63 infants enrolled, 51 (81%) were evaluated at 19 ± 2 months and 43 (68%) completed Bayley III (BSID).
- Of the 43 infants, 7 (16%) were diagnosed with disability, including 1 cerebral palsy and 2 autism.
- Bayley scores < 85 in either cognition, motor, or language were detected in 17 (40%): 14 (32%) language, 7 (16%) cognitive, and 6 (14%) motor domain.
- Infants with disability had more abnormalities on discharge examination and brain MRI, with longer hospital stay (p < 0.001).
- In this contemporary untreated cohort of mild HIE, disability occurred in 16% of infants at 18–22 months

Mild HIE – To Cool?

- CoolPrime Study
- Observational study

Best Practices

What is the current practice for mild HIE?

 Normothermia and TH for mild HIE are both currently accepted practices in standardized tertiary care, neonatal intensive care settings.

Best practice/guideline/care path objective(s):

 A prospective comparative effectiveness cohort investigation emulating a clinical pragmatic trial is the solution to compare benefit and risks of these 2 accepted practices.

What changes in current practice are likely to improve outcomes?

• Standardized adoption of TH if superior or normothermia if TH is not shown to be superior.

Is there a clinical algorithm?

- TH is the Standard of care treatment for moderate and severe HIE.
- Avoidance of hyperthermia is recommended following HIE.

Major recommendations:

- A standardized protocol with neuroimaging and neurodevelopmental follow-up is essential when providing care for any infant with HIE, including mild HIE.
- Universal follow-up of infants with mild HIE into school age for early detection of and intervention for neurodevelopmental impairments.

RCT in LMIC - Helix Trial

- HELIX trial, conducted across 3 South Asian countries and including 408 neonates,
- Increased mortality among neonates with NE who underwent cooling compared to the non-cooled group (36% vs 24%; OR 1.50 95% CI:1.04-2.20, p-0.0087).
 - Substantial proportion of small for gestational age (SGA) and low birthweight (LBW) neonates.
 - 73% of the neonates had seizures prior to initiating cooling,
 - Only 11% underwent cord blood gas analysis, and the majority were critically ill
 - 80% requiring inotropic support and 70% needing mechanical ventilation.
 - Cerebral abnormalities indicative of an acute intrapartum hypoxic event were present in only 25% of neonates examined with magnetic resonance imaging (MRI).
 - Fewer neonates in the cohort met the typical criteria of intrapartum hypoxia-ischemia, with only 67% having a 5-min Apgar score of <6, 6% showing fetal heart rate deceleration, and 3% experiencing a prolonged second stage of labor.
 - Survival with neurodisability was comparable between the TH and control groups (42% vs 35%; risk ratio (RR) 1.23 [95% CI: 0.89-1.64]);
 - Trial reported a reduction in disabling cerebral palsy (CP) in the TH group (11% vs 21%; RR 0.53 [95% CI: 0.28–0.98]).

Cooling in resource poor settings

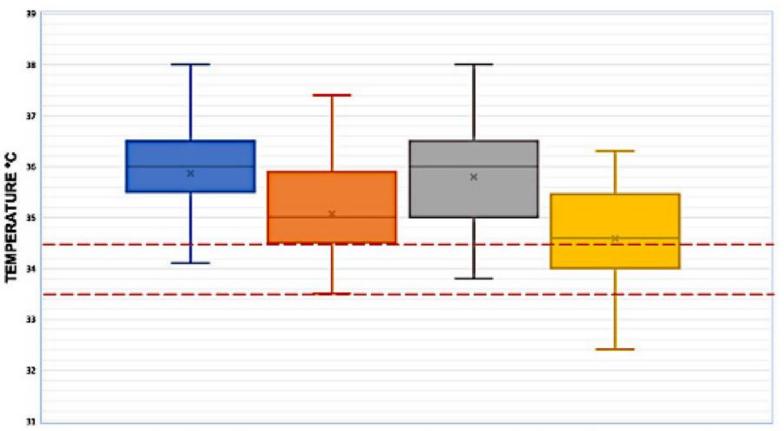
- Asphyxiated babies would not qualify for ventilation
- Some studies include
 - Passive cooling/accidental cooling
 - Gel packs
 - Servocontrolled cooling fan
 - Use of water bottles
- These studies demonstrate that a cost effective feasible method of cooling can be achieved
- Efficacy still needs to be demonstrated

Cooling in Transit

- Training of staff first responders
- Especially in countries with no neonatal retrieval teams
- Studies show if cool en-route shorter time to reach target temperatures and better outcomes
- 3 methods of passive cooling investigated
 - Passive cooling
 - Gel packs
 - Servo-controlled methods
- Servo controlled superior to other 2 methods less temperature fluctuations
 - 13 fold (gel packs) and 12 fold (passive cooling) with temperature fluctuations
 - No difference in adverse events between the methods of cooling

Phase change material (PCM) in transit

Median rectal temperature upon arrival was 34.5 °C (IQR 33.5–34.8) in PCM-group and 35.1 °C (IQR 34.5–35.9) in control group (*p* = 0.023).
Median time from birth to reach target temperature was 5.0± 1.4 h and 5.5 ± 1.2 h in the respective groups (p- 0.065).


- 81% PCM versus 62% without (**p** = **0.049**) had reached target temperature within the 6-h timeframe.

- No record of overcooling (< 32 °C) in any of the groups.

No difference in mortality rate between the two groups (33% and 34% respectively (p > 0.05)).

Greater temperature fluctuations with passive and PCM cooling

Control group (At referring hosp) Control group (Arrive VNCH) PCM group (At referring hosp) PCM group (Arrive VNCH)

Fig. 3 Box plot for temperature measurement at referring hospital and on arrival at VNCH. The area between the redlines shows the target temperature range of 33.5 °C to 34.5 °C

Tran TT et al. BMC Pediatrics 2024

Cooling in transit

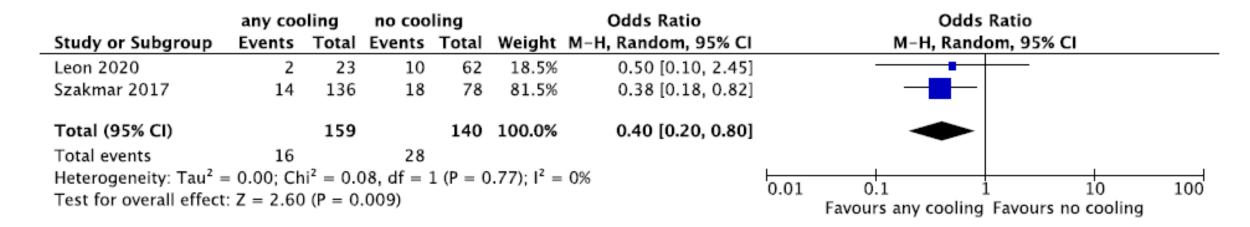


FIGURE 2 Forest plot of comparison: cooling vs. maintaining normal body temperature for outcome: in-hospital mortality

Target Temperature and Cooling in Transit

	servo-controlled active c	any other co	oling		Odds Ratio	Odds Ratio	
Study or Subgroup	Events Total		Events	Total	Weight M-H, Random, 95% Cl		M–H, Random, 95% Cl
Chaudhary 2013	70	70	47	64	16.3%	51.95 [3.05, 884.77]	
Stafford 2017	11	14	7	28	55.5%	11.00 [2.37, 51.14]	
TorreMonmany 2019	18	19	19	29	28.2%	9.47 [1.10, 81.68]	
Total (95% CI)		103		121	100.0%	13.58 [4.32, 42.66]	
Total events	99		73				
Heterogeneity: Tau ² =	0.00; Chi ² = 1.20, df = 2 (P	= 0.55);	$l^2 = 0\%$				0.01 0.1 1 10 100
Test for overall effect:	Z = 4.47 (P < 0.00001)						Favours any other cooling Favours servo-controlled

FIGURE 5 Forest plot of comparison: servo-controlled active cooling versus non servo-controlled (active or passive or both) cooling for outcome: proportion of newborns with target body temperature (range 33.0°C-34.0°C) on admission to a referral centre

	servo-controlled active co	any other co	ooling		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
Chaudhary 2013	0	70	22	64	21.9%	0.01 [0.00, 0.23]	+ <u>=</u>		
Lumba 2019	0	35	2	30	20.0%	0.16 [0.01, 3.48]	· · · · · · · · · · · · · · · · · · ·		
Stafford 2017	2	14	6	28	32.0%	0.61 [0.11, 3.51]			
TorreMonmany 2019	1	19	3	29	26.1%	0.48 [0.05, 5.01]			
Total (95% CI)		138		151	100.0%	0.19 [0.03, 1.21]			
Total events	3		33						
Heterogeneity: Tau ² =	1.97; Chi ² = 6.90, df = 3 (P	= 0.08);	$l^2 = 57\%$						
Test for overall effect:					0.01 0.1 1 10 100 Favours any other cooling Favours servo-controlled				

FIGURE 6 Forest plot of comparison: servo-controlled active cooling versus non servo-controlled (active or passive or both) cooling for outcome: the proportion of newborns with a body temperature < 33.0°C on admission to a referral centre

Sibrect et al. Acta Pediatrica 2022

Cooling in Transit

any cooling			ng	no	coolin	g	5	Std. Mean Difference	Std. Mean Difference			nce		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total Weight IV, Random, 95% CI				IV, Random, 95% CI				
Akula 2013	25	22	13	30	19	23	33.2%	-0.24 [-0.93, 0.44]						
Leon 2020	13.8	8	23	17.8	12.7	62	66.8%	-0.34 [-0.82, 0.14]						
Total (95% CI)			36			85	100.0%	-0.31 [-0.70, 0.09]						
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.05$, $df = 1$ (P = 0.82) Test for overall effect: Z = 1.54 (P = 0.12)						82); I ² :	= 0%		-100	-50 Favours any co	0 ooling Favour	50 's no cooling	100	

FIGURE 3 Forest plot of comparison: cooling vs. maintaining normal body temperature for outcome: duration of initial hospital stay

	any cooling			no cooling				Mean Difference	Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV,	Fixed, 95% (CI	
Leon 2020	3.83	1.18	23	5.12	1.32	62	69.0%	-1.29 [-1.87, -0.71]					
O'Reilly 2013	3.58	1.3	27	5.45	1.47	16	31.0%	-1.87 [-2.74, -1.00]			•		
Total (95% CI)			50			78	100.0%	-1.47 [-1.95, -0.98]			(
Heterogeneity: $Chi^2 = 1.18$, $df = 1$ (P = 0.28); $I^2 = 15\%$ Test for overall effect: Z = 5.94 (P < 0.00001)								-100	-50 Favours any co	0 oling Favou	50 rs no cooling	100	

FIGURE 4 Forest plot of comparison: cooling vs. maintaining normal body temperature for outcome: time to achieve target body temperature in hours after birth

Sibrect et al. Acta Pediatrica 2024

Cooling during Neonatal Transportation (NT)

- Any cooling is better than no cooling
- Any cooling decreased in-hospital mortality
 - No comparisons between active vs passive cooling

- For every 9 neonates cooled during transport 1 survived compared to no cooling
- Servo-controlled cooling better than PCM or passive cooling
 - Higher proportion reached target temperature of 33 34 °C (OR 13.58; 95% CI: 4.32 42.66)
 - For every 3 servo-controlled cooled infants during NT 1 had a body temp between 33 34 $^\circ\text{C}$
- No long-term Follow-ups analysed future directions

Future Recommendations

- Focus should be the comparison of servo-controlled active cooling devices with other cooling methods in neonatal transport.
- Standardised short-and long-term outcomes should be reported
 - time at which therapeutic hypothermia was initiated,
 - amount of time the body temperature was maintained within the target range during transport until arrival at referral centre,
 - the adverse effects of hypothermia, in-hospital
 - and later mortality,
 - and neurodevelopmental outcome in childhood.

ICU vs High Care Area

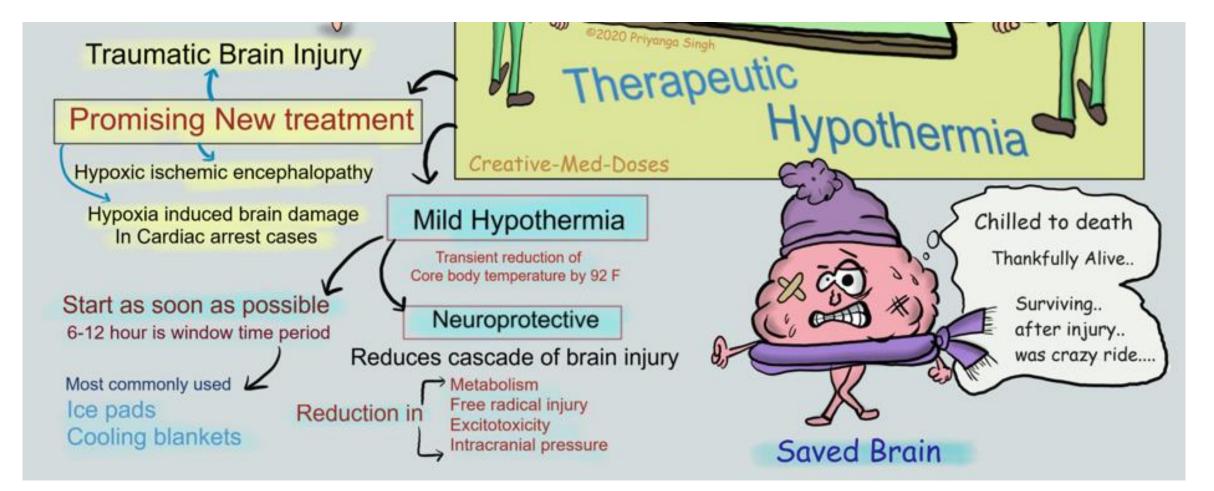
- Most high income countries (HIC) studies conducted in an ICU setting
- Neonates are ventilated in studies in HIC
- Sedation as infusions morphine or midazolam
- Outcomes favour TH

CHBAH

- TH in a high care setting- neonates on nasal cannulae or nCPAP are cooled
- Servo-controlled cooling machine, Monitor temperature, heart rate (HR), blood pressure (BP), Haemoglucotest (HGTs), continuously
- Sedation is given morphine orally
 - 0.05 -0.1mg/kg, titrated against the heart rate (HR)
 - If HR < 85 bpm naloxone given.
 - Given as stat oral doses
- Seizure medications phenobarbitone, oral Keppra, lignocaine are given
 - Aim to stop seizure medications before discharge if no seizures
- Feeds enterally 10mls/kg/day titrate by 10mls/kg/day based on the severity of the NNE
- Have the option to ventilate if PPHN or baby decompensates

Neurodevelopmental outcome in neonates with hypoxic-ischaemic encephalopathy managed with therapeutic hypothermia in a tertiarylevel public hospital outside an intensive care unit setting

- TH for 155 (87.1%), 113 of whom (72.9%) received TH.
- At 18–24 months, 32% had moderate-to-severe disability compared with 6% at 12 months, with the sensitivity and specificity of assessment at 12 months being 50% and 100%, respectively.
- The relatively low prevalence of disability (32%) at 18–24 months suggests that use of TH in a Level 2 nursery is feasible and possibly beneficial. More studies are needed to confirm these findings
- Another South African Study reported an 18% NDI in neonates that were cooled.


Characteristics and outcomes of neonates with intrapartum asphyxia managed with therapeutic hypothermia in a public tertiary hospital in South Africa

- Overall mortality was 29.0%, being 17.0% and 53.4% in cooled and non-cooled infants respectively
- Mortality rate of 17% in cooled neonates observed in this study is similar to rates of 13–20% reported in other observational studies from South Africa, from similar settings with access to mechanical ventilation or intensive care when needed
- This highlights the importance of offering other supportive care that neonates with moderate-to-severe encephalopathy might need in addition to cooling,
- Thus, cooling must not be offered in isolation without other services that these infants might need

Who should cool

- Tertiary Academic Hospitals
- Regional Hospitals provided the infrastructure to support the neonate
 - Invasive and non-invasive ventilation,
 - inotropic support,
 - seizure medications,
 - rehabilitation team and
 - long term follow up
 - Audit the practices
- All other centres to refer to a Cooling centre

Therapeutic Hypothermia

