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FIGURE 12: (a) and (b) are T2-weighted images 
in a 3-year-old female child with acute profound 
HIBI. (a) Dorsal midbrain tegmentum (cyan blue 
arrows) signal changes and (b) superior 
cerebellar (orange arrows) injury. (c) and (d) are 
coronal T2-weighted and IR sequences in a 7-
year-old female child who presents with 
dyskinetic cerebral palsy after grade 2 hypoxic 
ischemic encephalopathy. (c) Hyperintensity at 
the subthalamic nucleus (red arrows) of the 
upper midbrain and (d) corresponding low 
signal intensity (white arrows) extending close 
to the periaqueductal gray (yellow arrows 
indicate putamen and green arrows indicate 
thalamus).
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Mixed pattern
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Multilobar cystic encephalomalacia/ 
Multicystic encephalopathy
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BACKGROUND

The pattern of hypoxic–ischaemic brain injury (HIBI) in cases of 
profound ischaemia has been well described. 

There is generally a variable degree of involvement of the basal ganglia 
(especially the dorsal putamen) and the ventral thalamus which combines 
to create the basal ganglia–thalamus (BGT) pattern. 

Associated perirolandic injury, which may be of varying degrees of 
severity, is found in combination with the central nuclei destruction, 
which we refer to in this review as the Rolandic Basal Ganglia–Thalamus 
(RBGT) pattern.





The term parasagittal cerebral hypoxic–ischaemic
brain injury has been attributed predominantly to watershed
territory involvement in partial prolonged type of
HIBI. 

The parasagittal cortex on either side of the
inter-hemispheric fissure is traditionally recognised as a
watershed zone, located between the major arterial territories
supplying the cerebral cortex. 

There are however instances where a perirolandic injury may extend 
to the far reaches of the primary motor cortex or Brodmann area 4 
(BA4) and into the premotor cortex or Brodmann area 6 (BA6), 
including the supplementary motor area (SMA) and association 
cortex. 

It is not uncommon for radiologists to report these injuries as “mixed 
patterns” of injury. However, careful examination reveals continuity 
of the lesions with no intervening normal cerebral substrate, 
indicating that all the affected structures are contiguously destroyed.



The purpose of this study 

* To describe the spectrum of parasagittal brain injuries identified at the perirolandic
region in term neonates attributable to severe central type hypoxia–ischaemia. 

* To show the extent of injury in each grade and the associated structural damage incurred, 
remote from the parasagittal area, including the basal ganglia, thalamus and other
important substrates. 

* to show that in addition to parasagittal injuries due to partial prolonged ischaemia,
there is a gradation of injuries also identified at the parasagittal cortex, 
attributable to profound and sustained hypoxia–ischaemia of the central injury 
subtype.



Methods

Imaging was performed at different times after the perinatal injury, dependent on clinician referral,
and showed a range of patterns of injury in the chronic phase of HIBI. The MRI scans were all 
performed on 1.5 T Siemens Scanners. 

Sagittal volumetric, 1 mm slices GE 1900/2.95 (TR/TE (msec)) and coronal volumetric Inversion 
Recovery (IR) 1.1-mm slices SE 4000/363 (TR/ TE (msec)), coronal IR through temporal lobes, axial 
T2, axial FLAIR, axial diffusion-weighted/ADC, axial susceptibility- weighted and coronal T2-
weighted sequences were obtained in all patients. 

The MRI studies of these full-term infants were retrospectively independently reviewed by the 
principal investigator (S.K.M.) and coinvestigator (J.L.) with neuroradiological expertise of
15 years and 30 years, respectively. 

From this database of 297 patients, we classified injuries into the four major
patterns of HIBI [8] as per classification in Table 1.







The studies were evaluated for morphology and signal abnormalities of multiple specific structures in 
the brain using a devised grading system. 

A simple 0–3 scoring system was applied to each region independently including
0 = no injury, 
1 = mild injury (less than a third of the structure was injured), 
2 = moderate injury (more than one third, but less than two thirds of the structure was injured)   
3 = severe injury (more than two thirds, with up to near complete destruction of the substrate). 

Particular attention was given to the substrates previously enumerated as being high metabolic areas of 
the brain including the perirolandic sensorimotor cortex, 
Paracentral lobule, deep grey matter nuclei (especially putamina and thalami), 
the brainstem, the hippocampi, the superficial and deep white matter, the visual cortex,
the primary auditory cortex, insular, mammillary bodies, fornix and the corpus callosum [8].





Each study was assessed with a view to accurate grading of the injuries
at each specific substrate. 

Sixteen separate substrate assessments, listed in Table 2, were initially 
undertaken for each patient. 

Regarding the basal ganglia, evaluation of injuries focussed upon the posterior 
aspect of the putamina and at the thalami, predominantly the ventral lateral aspect. 

Hippocampal injuries were documented based upon assessment in the coronal 
plane with relevant inversion recovery sequences planned according to the 
triplanar axes of the hippocampus. 

We subsequently focussed the evaluation to 5 specific parasagittal features
listed in bold below (each evaluated from 0 to 3 as above) leading to a potential 
maximum parasagittal score out of 15. 

In reviewing the perirolandic injuries, careful note was made of the involvement of 
the paracentral lobule (PCL) including the supplementary motor areas, the 
superior frontal gyrus, precentral gyrus, the postcentral
gyrus and the degree of interhemispheric fissure (IHF) widening.

1

2

3

4
5











In the mild perirolandic (Grade 1) subtype,
(N = 21/83, 25%) the central sulcus is outlined by
hyperintensity on the axial FLAIR sequence, optimal to
show (as in Fig. 2) this often-subtle injury. 
In some children, the injury may be limited in size and 
located in the pre-rolandic or post-rolandic lip of the 
sensorimotor cortex, with sparing of the rest of the cerebral 
mantle.

When motor cortex injury predominantly involves
the “hand knob” region of the homunculus, bilateral
upper limb function is affected and there is no appreciable
widening of the interhemispheric fissure. 

The parasagittal score in this subgroup did not exceed 6/15 
and the average score was 3/15.

Mild perirolandic (Grade 1) subtype



The moderate perirolandic (Grade 2) subtype
(N = 22/83, 27%) is manifested as partial injury of the
ventral aspect of the paracentral lobule in addition to
the perirolandic injury. 

A particular involvement of the SMA is manifested in this 
subgroup (shown in Fig. 3) resulting in a slight widening of the 
interhemispheric fissure, in the region of the paracentral lobule 
anteriorly with sparing of the margins of the paracentral lobule,
the lateral margins of the central sulci and absence of
extension towards the superior frontal gyrus (SFG) and
superior parietal lobules (SPL). 

The average parasagittal score for this subgroup was 5/15.

Moderate perirolandic (Grade 2) subtype



The severe perirolandic (Grade 3) subtype (N = 21/83, 25%) is associated with greater destruction of the anterior 
paracentral lobule including more of the SMA and surrounding premotor association cortex, more marked atrophy 
of the pre-central and post-central gyri, and greater widening of the interhemispheric fissure which has an 
inverted-V configuration, open dorsally and with a closed apex anteriorly at the superior frontal gyrus level (Fig. 
4). The average parasagittal score in this subtype was 10/15.

Severe perirolandic (Grade 3) subtype 



(MPI) pattern, = an exaggerated form of central hypoxic–ischaemic brain injury. 
At this end of the spectrum, shown in Fig. 5, we found a diamond-shaped expansion of the interhemispheric fissure, 
possibly a consequence of nearly complete destruction of the paracentral lobule, SMA and sensorimotor cortex.
The parasagittal scores in this subtype were the highest with the average score measured at 13/15. 

(Grade 4) Massive paramedian injury





Involvement of the basal ganglia, thalami and hippocampi was noted in all 19 MPI patients, with spongiotic 
cavitation seen involving much of the thalamus and putamen bilaterally.
The hippocampi were always severely injured. 
Overall white matter volume was reduced, involving the central motor core of the brain and much of the pyramidal 
cortico-spinal tract as well as greater thinning of the corpus callosum. 
Secondary ventricular prominence, thinning of the fornix and smaller mammillary bodies.
The loss of volume at the brainstem was also found to be more marked in this most severe category
of injury, likely a result of Wallerian degeneration.

(Grade 4) Massive paramedian injury









Here, we have presented a new perspective with a gradation
of the parasagittal cortex injury in children who have
suffered severe and sustained hypoxic–ischaemic insults.
We propose that this four-tiered gradation correlates with
the severity of the perinatal insult and the attendant secondary
and subsequent cascades of cellular injury. In this
new classification, we have also introduced the most severe
subtype of this injury which we have termed the massive
paramedian injury in which the entire central motor core
of the brain is destroyed. Common clinico-pathological
features have been identified with the MPI subtype in all
the cases presented here, and in particular, these were all
associated with prolongation of the second stage of labour.
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• Critically, the risk of experiencing a 
thalamus L-sign type injury was 7.38 
times higher when an occipital lobe 
injury was identified compared with 
when it was not involved, statistically significant.

• Similarly, the risk of experiencing a 
thalamus L-sign injury was 3.07 times 
higher when a parietal injury was 
present compared with when it was 
not involved, statistically significant.

• The risk of experiencing a thalamus L-sign 
injury was 1.19 times higher when a 
brainstem injury was present compared 
with when it was not involved statistically significant
(P<.001). 

• The risk of experiencing a thalamus L-sign 
injury was also higher when the frontal 
lobe, temporal lobe, and cerebellar injuries 
were all present compared with when they 
were not involved





Table A. Axial T2-weighted and 
FLAIR sequence images of ten 
patients with documented pure 
neonatal hypoglycemic brain injury. 
Note the predominant parieto-
occipital cortical injuries as well as 
distinct sparing of the thalami with 
absent thalamus L-sign.





Table B. The third group 
comprising patients with 
combined hypoxic-ischemic 
and hypoglycemic brain injury. 
Note the presence of the 
thalamus L-sign and the 
cortical watershed injuries.





The vicious interplay between hypoxia and hypoglycemia and
their attendant secondary inflammatory cascades leads to a combined
final common pathway injury, especially in patients whose
mother had prolonged labor. 

The thalamus L-sign, we propose, is an indication of a partial, 
prolonged type of HIBI and occurs in patients who have endured 
additional HGI. 

In the patients we presented, who had documented, isolated, pure HGI 
without HIBI, the thalamus L-sign was not observed.

We, therefore, introduce this sign as a possible biomarker for HIBI of 
the partial prolonged subtype, particularly when the posterior 
watershed territories  have been involved. 

This phenomenon is exaggerated in
patients with combined HGI and HIBI due to the compounded
lack of usable substrates for brain metabolism.
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